%
&
// INTRODUCTION TO GITOPS doudogu

— A NEW AGE OF AUTOMATION?

Johannes Schnatterer, Cloudogu GmbH

Version: 202104261719-be08968

https://twitter.com/jschnatterer

Agenda

What is GitOps?

Where can it be used?
How can it be used?
What challenges arise?

Operating model
Term (August 2017).

Use developer tooling to drive operations

https://weave.works/blog/gitops-operations-by-pull-request

“Classic” Continuous Delivery ("ClOps”)

‘ push pull deploy
Developer

GitOps

pull

‘ push

Developer

O deploy

GitOps Principles

The principle of declarative desired state

The principle of immutable desired state versions
The principle of state reconciliation

The principle of operations through declaration

WIP!
O
=

https://github.com/gitops-working-group/gitops-working-group/pull/48
http://172.17.0.2:8080/hackmd.io/arwvV8NUQX683uBM3HzyNQem

GitOps vs DevOps

DevOps is about collaboration of formerly separate groups (mindset)
GitOps focuses on ops (operations model)
GitOps can be used with or without DevOps

“The right way to do DevOps” (Alexis Richardson)

Dev < Ops Ops
Manual Ops Automation

=
(iX 4/2021) ==

https://youtu.be/lvLqJWOixDI
https://www.heise.de/select/ix/2021/4/2032116550453239806
https://schlomo.schapiro.org/

Advantages of GitOps

(Almost) no access to cluster from outside

No credentials on Cl server
Forces 100% declarative description & = 3 oL
auditable
automatic sync of cluster and git 2!

Enterprise: Accessing git is simpler
(no new firewall rules)

E GitOps History in a nutshell

grew up operating applications on Kubernetes,
IS now rising above it, operating clusters
and other (cloud) infrastructure

More on the history of GitOps:

https://youtu.be/lvLqJWOixDI

A GitOps Dream

-

Physical Layer

Cloud Infra

o

Cluster
K8s Resources

@ l’ Services

K8s Clusters

N

Cloud Infra

D A
b [oe]
D
. Servers Switches
Physical Layer

\g

GitOps reality

-

Physical Layer

Cloud Infra

X ¢ o

GitOps tool K8s Resources

maturity
@ l’ Services

K8s Clusters

N

Cloud Infra

D A
b [oe]
D
. Servers Switches
Physical Layer

\g

Categories

Tools for Kubernetes AppOps
Tools for Kubernetes ClusterOps

Tools Close to Infrastructure ;g. ®
with or
without Kubernetes ®

Supplementary GitOps tools

GitOps Tools for Kubernetes AppOps
O i Q

N\ —

https://github.com/fluxcd/flux2
https://github.com/argoproj/argo-cd/
https://github.com/rancher/fleet
https://github.com/pipe-cd/pipe
https://github.com/jenkins-x/jx
https://github.com/werf/werf

Operate Kubernetes with Kubernetes

2 8L 8
O\
e

GitOps Tools for Kubernetes ClusterOps
O i Q

N\ —

+
;‘;ﬁ', | + Operator
P O

https://github.com/fluxcd/flux2
https://github.com/argoproj/argo-cd/
https://github.com/rancher/fleet
https://github.com/pipe-cd/pipe
https://github.com/jenkins-x/jx
https://github.com/werf/werf
https://github.com/hashicorp/terraform-k8s
https://github.com/rancher/terraform-controller
https://github.com/pipe-cd/pipe

Tools Close to Infrastructure

GRODEGEES

Q¢
‘ | + Operator

without Kubernetes

"* '
AWX 1’

https://github.com/pipe-cd/pipe
https://github.com/crossplane/crossplane
https://github.com/runatlantis/atlantis
https://github.com/ansible/awx
https://github.com/weaveworks/ignite

Supplementary GitOps tools

Secrets

()

) + K8s integration
()
) (plugin)
flux v2 (native support)

()

Operators for Key Management Systems
()
()
()

https://github.com/bitnami-labs/sealed-secrets
https://github.com/mozilla/sops
https://github.com/isindir/sops-secrets-operator
https://github.com/jkroepke/helm-secrets
https://github.com/Soluto/kamus
https://github.com/external-secrets/kubernetes-external-secrets
https://github.com/ContainerSolutions/externalsecret-operator
https://github.com/ricoberger/vault-secrets-operator

Others

Deployment Strategies - Progressive Delivery

€ @
S 9

Backups
Horizontal Pod Autoscaler

https://github.com/fluxcd/flagger
https://github.com/argoproj/argo-rollouts/

See also

= ()
General tool comparison,
tips on criteria for tool selection,
comparison of ArgoCD v1 and Flux v2

O

https://cloudogu.com/de/blog/gitops-tools
https://www.heise.de/select/ix/2021/4/2100807514188955838
https://radar.cncf.io/2021-02-secrets-managemen
https://github.com/weaveworks/awesome-gitops
https://www.gitops.tech/

igyym

 can GitOps be use

]
|Illllll|lllllll||
L[]

/5995 | — mm.
Y=

e~ .\.ma\w- . i < " o/l
mwm Gl MMWWMM . m%ﬁ /

A\ TS

B wew D u
Mﬁ N
i N\

Bt W
BEtR
Rath et -
ERkRe

FERRrn

J1L I

0
all |

Implementing stages
Role of Cl server
Number of Repos

Implementing stages

Idea 1: Staging Branches

Develop # Staging
Main ® Production

Logic for branching complicated and error prone (merges)

Idea 2: Staging folders

On the same branch:; One folder per stage
Process: Just commit to staging folder, create PRs for prod
Risky, but can be automized

Logic for branching simpler
Supports arbitrary number of stages

Role of Cl server

push

- Koo

Developer

pull

pull

. -

Application repo vs GitOps repo

Good pratice: Keeping everything in app repo (code, docs, infra)
GitOps: Put infra in separate repo!
Advantage: All cluster infra in one repo
Disadvantages:
Separated maintenance & versioning off app and infra code
Review spans across multiple repos
Local dev more difficult

Can’t we have both?

Yes, we can! Using a Cl-Server

push

a (e

Developer

pull

push

Disadvantages

Complexity in Cl pipelines = efforts for development
A lot can go wrong. Examples

Git Conflicts caused by concurrency

Danger of inconsistencies

* Recommendation: Use a plugin or library

Example: ¢)

https://github.com/cloudogu/gitops-build-lib

Advantages

Fail early: static YAML analysis on Cl server,

e.g. vamlint, kubeval, helm lint

Automated staging (e.g. PR creation, namespaces)
Use laC for local dev

Write config files not inline YAML

® Automatically converted to configMap
Simplify review by adding info to PRs

Comments Commits Diff

#19902 backend/my.cloudogu.com@741e0ab

‘_ Changeset 1cdc3a9 was committed 2 months ago 2 Details <[> Sources

Authored by Johannes Schnatterer and committed by

Demo

. 10

https://github.com/cloudogu/k8s-gitops-playground

TNy halients frise YN
e | —j | e o Y
e

\ e

T T e

More Infra....

GitOps Operator: One or more custom controllers
Helm, Kustomize Controllers
Operators for Supplementary tools (secrets, etc.)
Monitoring/Alerting systems

... higher cost

Maintenance/patching (vendor dependency)
Resource consumption
Error handling
failing late and silently
monitoring/alerting required
reason might be difficult to pinpoint

operators cause alerts (OOM errors, on Git/API server down, etc.)

Day two questions

POC is simple
Operations in prod has its challenges
How to structure repos?
How to realize staging?
How to delete resources?
How to realize local dev env?

How to delete resources?

"garbage collection” (Flux) / "resource pruning” (Argo(CD)
disabled by default
XK Enable from the start ® avoid manual interaction

Local development

Option 1: Deploy GitOps operator and Git server on local cluster
» complicated
Option 2: Just carry on without GitOps. Possible when IaC remains in

app repo

CONCLYSION

Personal Conclusion

After migrating to and operating with GitOps in production for > 1
year

Smoother CI/CD,
everything declarative
faster deployment
force sync desired state # actual state
But: security advantages only when finished migration
A new age of automation? Not yet, but lots of innovation ahead!

GitOps experience distilled

<4+ Has advantages, once established

— Mileage for getting there may vary

Adopt?

AEEE
Kubernetes AppOps: Definitely
Cloud Infra: Depends
Brownfield: Depends

Techniques

TECHNOLOGY RADAR

Download Subscribe Search Build your Radar About

Techniques

GitOps

Published: Apr 13, 2021

HOLD

We suggest approaching GitOps with a degree of care, especially with regard to branching strategies.
GitOps can be seen as a way of implementing infrastructure as code that involves continuously
synchronizing and applying infrastructure code from Git into various environments. When used with a
"branch per environment" infrastructure, changes are promoted from one environment to the next by
merging code. While treating code as the single source of truth is clearly a sound approach,
branch per environment lead to environmental drift and eventually environment-specific configs as code

IS g o =ele g RO o) o] [T E L [o VT RS dol o MEIpMaIgEllY,. This is very similar to what we've seen in the past with

long-lived branches with GitFlow.

https://www.thoughtworks.com/radar/techniques/gitops

Johannes Schnatterer, Cloudogu GmbH

&d

cloudogu
i GitOps Resources (intro, tool comparison, etc.)

() Links to GitOps Playground and Build Lib
® Discussions
®® Training

Slides

https://cloudogu.com/gitops/

Image sources
What is GitOps?

What can GitOps be used for?
How can GitOps be used? Tools:
How can GitOps be used? Design Decisions:

What challenges arise with GitOps?

https://pixabay.com/illustrations/question-mark-important-sign-1872665/
https://pixabay.com/photos/hammer-nails-wood-board-tool-work-1629587/
https://pixabay.com/photos/tools-knives-wrenches-drills-1845426/
https://unsplash.com/photos/wWQ760meyWI
https://unsplash.com/photos/bJhT_8nbUA0

