09. -12.12.2019
Frankfurt am Main

Johannes Schnatterer, Cloudogu GmbH

Kubernetes-Security:
3 Dinge, die jeder
@jschnatterer Entwickler wissen sollte

#ittage

YW @haveibeenpwned

f

7

& https://haveibeenpwned.com/PwnedWebsites

https://twitter.com/haveibeenpwned
https://haveibeenpwned.com/PwnedWebsites

emau

piZap

BTCe

o by

mpace

vATight el

YouroRr

™

o

fafont
com

evite

L\

PLEX

SHEIN

L]

]

e

@At

Do

AV

500P%

JustDate.

7K7K

Fosscamy

EyeEm

THISHABBO

Kimsut

&P

(© snail

whiepages

Prrackss.

v

Cotlisom

BKW

Mt

B it

KM.RU

matel

ABtsEwITH

det.com

4

HAUTELOOK

C)

SONY

°
~
TRAI

e

&

NEU

Chegg

Pone

i

HEES

& arRy.

Win/Vista

&
0

o

o

LEET

Quantum
Stresser

AERSERV

&

=2

9

I

HTVom

Hobalo

[7waiso

>]

i

Dxat

it

wo

LV

es——

I houzz

‘ UITTLE
MONSTERS.

Mol

RBKROOS

F—

I3

wwinogul

HubaTech

sumo

VERIFICD

ARed

Reghack

v

sy

VICTORY

osoLT

[

ER

LOUNGE
BOARD

Split

APOLLC

Bombujeu

{/

Broticgcom

MyEHA

une

andex

imgur

(8)

Vo

ouKky

Plenty of security options

securityContext I'U NASNONROOT runasuser priviteged
p rOC M O U nt allowPrivilegeEscalation readOnlyRootFilesystem

PodSecurityPolicy reac NetworkPolicy seccomp L| NUX

Ca pa bi “tieS AppArmor SE |_| NUX Fa ICO Open Policy Agent

gVISOI’ Kata Containers N d b l.a CO nta i NEIS Service Mesh KubeSec
KubeBench

3 Things Every Developer
Should Know About K8s

Security

0. Role Base Access | /

e rendl €

(RBAC) L \\\///E

https://memegenerator.net/instance/83566913/homer-simpson-boring

RBAC active by default since K8s 1.6
... but not if you migrated!

7.

« Try

curl --cacert /var/run/secrets/kubernetes.io/serviceaccount/ca.crt \
-H "Authorization: Bearer $(cat /var/run/secrets/kubernetes.io/serviceaccount/token)" \
https://${KUBERNETES_SERVICE_HOST}/api/vl/secrets

- If not needed, disable access to K8s API

automountServiceAccountToken:

7.4

: Demo

Cluster legacy authz

Namespace 'de

Web Console

Cluster RBAC

space ‘default’

Web Console

7.

http://legacy-authz/
http://rbac/

A "firewall" for communication between pods.

Applied to pods
within namespace
via labels
Ingress / egress
to/from pods (in namespaces) or CIDRs (egress only)
for specific ports (optional)
Enforced by the CNI Plugin (e.g. Calico)
A No Network Policies: All traffic allowed

& Helpful to get started

O

Securing Cluster Networking with Network Policies - Ahmet Balkan

Interactively describes what a netpol does:

kubectl describe netpol <name>

https://github.com/ahmetb/kubernetes-network-policy-recipes
https://www.youtube.com/watch?v=3gGpMmYeEO8

Recommendation: Whitelist ingress

traffic

In every namespace except kube-system:

Deny ingress between pods,
then whitelist all allowed routes.

Advanced: ingress to kube-system

A Might stop the apps in your cluster from working

Don't forget to:

Allow external access to ingress controller
Allow access to kube-dns/core-dns to every namespace

Advanced: egress

Verbose solution:
Deny egress between pods,
then whitelist all allowed routes,
repeating all ingress rules. @
More pragmatic solution:
Allow only egress within the cluster,
then whitelist pods that need access to internet.

i Net pol pitfalls

Whitelisting monitoring tools (e.g. Prometheus)

Restart might be necessary (e.g. Prometheus)

No labels on namespaces by default

egress morerecentthan 1ngress rules and less sophisticated

Policies might not be supported by CNI Plugin.
Testing!

https://www.inovex.de/blog/test-kubernetes-network-policies/

More Features?

Proprietary extensions of CNI Plugin (e.g. cilium or calico)
Service Meshes: similar features, also work with multiple clusters
- different strengths, support each other

https://istio.io/blog/2017/0.1-using-network-policy/

Cluster/Network Policies

Fm
LN

web-console:80 \ nosglclient:3000

[Namespace [defauit) [Namespace production

Web Console nosglclient

mongodb:/mongodb:27017

mongodb

http://nosqlclient/
http://web-console/

1§ Wrap-Up: Network Policies

My recommendations:

Ingress whitelisting in non-kube - system namespaces
Use with care

whitelisting in kube-system

egress whitelisting for cluster-external traffic

.10

Defines security parameter per pod/container = container runtime

& Secure Pods - Tim Allclair

.0

https://www.youtube.com/watch?v=GLwmJh-j3rs

Recommendations per Container

apiVersion: vi
kind: Pod
metadata:
annotations:
seccomp.security.alpha.kubernetes.io/pod: runtime/default
spec:
containers:
- name: restricted
securityContext:
runAsNonRoot :
runAsUser: 100000
runAsGroup: 100000
readonlyRootFilesystem:
allowPrivilegeEscalation:
capabilities:
drop:
- ALL
enableServicelLinks:

Recommendation per Container in Detail

Enable seccomp

Enables e.g. docker's seccomp default profile that block 44/~300 Syscalls
Has mitigated Kernel vulns in past and might in future @

See also k8s security audit:

9.5

https://docs.docker.com/engine/security/non-events/
https://www.cncf.io/blog/2019/08/06/open-sourcing-the-kubernetes-security-audit/

Run as unprivileged user

runAsNonRoot: true
Container is not started when the user is root
runAsUser and runAsGroup > 10000
Reduces risk to run as user existing on host
In case of container escape UID/GID does not have privileges on host
Mitigates vuln in runc (used by Docker among others)

9.

https://kubernetes.io/blog/2019/02/11/runc-and-cve-2019-5736/

No Privilege escalation

Container can'tincrease privileges
E.g. sudo, setuld, Kernel vulnerabilities

Read-only root file system

Starts container without read-write layer

Writing only allowed in volumes

Config or code within the container cannot be manipulated
Perk: More efficient (no CoW)

9.

Drop Capabilities

Drops even the default caps:

Mitigates CapNetRaw attack - DNS Spoofing on Kubernetes Clusters

9.

https://github.com/moby/moby/blob/3152f94/oci/caps/defaults.go
https://blog.aquasec.com/dns-spoofing-kubernetes-clusters

Bonus: No Services in Environment

By default: Each K8s service written to each container's env vars
-» Docker Link legacy, no longer needed
But convenient info for attacker where to go next

.10

74 Security context pitfalls

Read-only root file system

Application might need temp folder to write to

Run image locally using docker, access app
X Run automated e2e/integration tests
Review container's read-write layer via

docker diff <containerName>

Mount folders asemptyDir volumesin pod

.12

Drop Capabilities

Some images require capabilities

Find out needed Caps locally:

docker run --rm --cap-drop ALL <image>

docker run --rm --cap-drop ALL --cap-add CAP_CHOWN <image>

Add necessary caps to k8s resource
Alternative: Find image with same app that does not require caps, e.g.
nginxinc/nginx-unprivileged

.13

Run as unprivileged user

Non-root verification only supports numeric user. @
runAsUser: 100000insecurityContext of podor
USER 100000 inDockerfile ofimage.

Some official images run as root by default.

Find a trusted image that does not run as root
e.g. for mongo or postgres:

Derive from the original image and create your own non-root image
e.g. nginx: ©)

.14

https://hub.docker.com/r/bitnami/
https://github.com/schnatterer/nginx-unpriv

UID 100000 might not have permissions. Solutions:
Init Container sets permissions for PVCs
Permissions inimage = chmod/chownin Dockerfile
Application requires user for UID in /etc/passwd
New image that contains a user for UID e.g. 100000 or
Create /etc/passwd ininit container and mountinto app
container
runAsGroup - beta from K8s 1.14. Before that defaults to GID 0 @®

.15

https://github.com/kubernetes/enhancements/issues/213

Tools

Find out if your cluster adheres to these and other good security practices:

) - managable amount of checks
O
a whole lot of checks,
even deny all ingress and egress NetPols and AppArmor Annotations

-» Be prepared for a lot of findings
-» Create your own good practices

.16

https://github.com/controlplaneio/kubesec
https://github.com/Shopify/kubeaudit

: Demo

Security Context & PSP

Namespace 'wild-west'

nginx nginxinc/nginx-unprivileged

17

1§ Wrap-Up: Security Context

My recommendations:

Start with least privilege
Only differ if there's absolutely no other way

.18

enforce security context cluster-wide
additional options for blocking pods trying to
enter node's Linux namespaces (net, PID, etc.)
mounting docker socket,
binding ports to nodes,
starting privileged containers
etc.
more effort than security context and different syntax @

- Still highly recommended!

10.

Recommendation

10.

https://github.com/cloudogu/k8s-security-demos/blob/master/4-pod-security-policies/demo/01-psp-restrictive.yaml
https://github.com/cloudogu/k8s-security-demos/blob/master/4-pod-security-policies/demo/01-psp-restrictive.yaml

Too much ground to cover for 45 min!

D
®

See Demo Repo on last slide

10.

Summary

Enable RBAC
Don't allow arbitrary connections between pods, e.g. via NetPols
Start with least privilege for your containers

using either securityContext or

PodSecurityPolicy

11.

What for?

Increase security
Reduce risk of data breach
Don'tend up on

11.

https://twitter.com/haveibeenpwned

Johannes Schnatterer

Cloudogu GmbH 9

cloudogu

K8s Security series on JavaSPEKTRUM starting 05/2019

See also &

Demo Source:

Y Y A e

https://cloudogu.com/schulungen
https://cloudogu.com/blog
https://twitter.com/jschnatterer
https://twitter.com/cloudogu
https://github.com/cloudogu/k8s-security-demos

