L

Il GOOD PRACTICES FOR SECUR%éfIb
cloudogu
KUBERNETES APPOPS

JOHANNES SCHNATTERER
CLOUDOGU GMBH

VERSION: 202003261550-ECO0F865

http://172.17.0.2:8080/Good-Practices-for-Secure-Kubernetes-AppOps.pdf

Outline

How to improve application security
using Kubernetes security built-ins

pragmatically

K8s built-in security

mechanisms

Network Policies
Security Context
Pod Security Policies

Plenty of Options

Secure by default?
How to improve pragmatically?

Network Policie lllll 3 /
(netpol) | = " \

\\ i
I

VA

A "firewall" for communication between pods.

Applied to pods
within namespace
via labels
Ingress / egress
to/from pods (in namespaces) or CIDRs (egress only)
for specific ports (optional)
Enforced by the CNI Plugin (e.g. Calico)
A No Network Policies: All traffic allowed

X Helpful to get started

O

Securing Cluster Networking with Network Policies - Ahmet Balkan

Interactively describes what a netpol does:

kubectl describe netpol <name>

https://github.com/ahmetb/kubernetes-network-policy-recipes
https://www.youtube.com/watch?v=3gGpMmYeEO8

Recommendation: Whitelist ingress

traffic

In every namespace except kube-system:

Deny ingress between pods,
then whitelist all allowed routes.

Advanced: ingress to kube-system

A Might stop the apps in your cluster from working

Don't forget to:

Allow external access to ingress controller
Allow access to kube-dns/core-dns to every namespace

Advanced: egress

Verbose solution:
Deny egress between pods,
then whitelist all allowed routes,
repeating all ingress rules. @
More pragmatic solution:
Allow only egress within the cluster,
then whitelist pods that need access to internet.

7Net pol pitfalls

Whitelisting monitoring tools (e.g. Prometheus)

Restart might be necessary (e.g. Prometheus)

No labels on namespaces by default

egress more recent than 1ngress rules and less sophisticated

Policies might not be supported by CNI Plugin.
Testing!

https://www.inovex.de/blog/test-kubernetes-network-policies/

More Features?

Proprietary extensions of CNI Plugin (e.g. cilium or calico)
Service Meshes: similar features, also work with multiple clusters
% different strengths, support each other

https://istio.io/blog/2017/0.1-using-network-policy/

- Demo

K8s Cluster

Namespace 'kube-system'\

Web Console

NetPols NetPols

mongodb:/mongodb:27017

mongodb

http://nosqlclient/
http://web-console/

1§ Wrap-Up: Network Policies

My recommendations:

Ingress whitelisting in non-kube - system namespaces
Use with care

whitelisting in kube-system

egress whitelisting for cluster-external traffic

.10

Security Context: Defines security parameters per pod/container
® container runtime
& Secure Pods - Tim Allclair

Cluster-wide security parameters: See Pod Security Policies

https://www.youtube.com/watch?v=GLwmJh-j3rs

Recommendations per Container

apiVersion: vi
kind: Pod
metadata:
annotations:
seccomp.security.alpha.kubernetes.io/pod: runtime/default
spec:
containers:
- name: restricted
securityContext:
runAsNonRoot:
runAsuser: 100000
runAsGroup: 100000
readonlyRootFilesystem:
allowPrivilegeEscalation:
capabilities:
drop:
- ALL
enableServicelinks:
automountServiceAccountToken:

Recommendation per Container in

Detall

Enable seccomp

Enables e.g. docker's seccomp default profile that block 44/~300

Syscalls
&/Has mitigated Kernel vulns in past and might in future @

See also k8s security audit:

https://docs.docker.com/engine/security/non-events/
https://www.cncf.io/blog/2019/08/06/open-sourcing-the-kubernetes-security-audit/

Run as unprivileged user

runAsNonRoot: true

Container is not started when the user is root

runAsUser and runAsGroup > 10000
& Reduces risk to run as user existing on host
& In case of container escape UID/GID does not have
privileges on host

& E.g. mitigates vuln in runc (used by Docker among others)

https://kubernetes.io/blog/2019/02/11/runc-and-cve-2019-5736/

No Privilege escalation

Container can't increase privileges
& E.g. sudo, setuid, Kernel vulnerabilities

Read-only root file system

Starts container without read-write layer
Writing only allowed in volumes
& Config or code within the container cannot be manipulated

Drop Capabilities

Drops even the default caps:

& E.g. Mitigates CapNetRaw attack - DNS Spoofing on
Kubernetes Clusters

https://github.com/moby/moby/blob/3152f94/oci/caps/defaults.go
https://blog.aquasec.com/dns-spoofing-kubernetes-clusters

Bonus: No Services in Environment

By default: Each K8s service written to each container's env vars
® Docker Link legacy, no longer needed
& But convenient info for attacker where to go next

.10

Bonus: Disable access to K8s API

SA Token in every pod for api-server authn

curl --cacert /var/run/secrets/kubernetes.io/serviceaccount/ca.crt \
-H "Authorization: Bearer $(cat /var/run/secrets/kubernetes.io/serviceaccount/token)"
https://${KUBERNETES_SERVICE_HOST}/api/v1l/

If not needed, disable!
No authentication possible
& Lesser risk of security misconfig or vulns in authz

74 Security context pitfalls

Read-only root file system

Application might need temp folder to write to

Run image locally using docker, access app
& Run automated e2e/integration tests
Review container's read-write layer via

docker diff <containerName>

Mount folders as emptyDir volumes in pod

.13

Drop Capabilities

Some images require capabilities

Find out needed Caps locally:

docker run --rm --cap-drop ALL <image>

docker run --rm --cap-drop ALL --cap-add CAP_CHOWN <image>

Add necessary caps to k8s resource
Alternative: Find image with same app that does not require caps,
e.g. hginxinc/nginx-unprivileged

.14

Run as unprivileged user

Some official images run as root by default.
Find a trusted image that does not run as root
e.g. for mongo or postgres:

Create your own non-root image
(potentially basing on original image)
e.g. nginx: ©)

Non-root verification only supports numeric user. @
runAsUser: 100000 in securityContext of pod or
USER 100000 in Dockerfile of image.

.15

https://hub.docker.com/r/bitnami/
https://github.com/schnatterer/nginx-unpriv

UID 100000 might not have permissions. Solutions:
Init Container sets permissions for PVCs
Permissions in image ® chmod/chown in Dockerfile

Run in root Group - GID 0

.16

https://docs.openshift.com/container-platform/4.3/openshift_images/create-images.html#images-create-guide-openshift_create-images

Tools

Find out if your cluster adheres to these and other good security
practices:

» - managable amount of checks
O
a whole lot of checks,
even deny all ingress and egress NetPols and AppArmor
Annotations

® Be prepared for a lot of findings
% Create your own good practices

17

https://github.com/controlplaneio/kubesec
https://github.com/Shopify/kubeaudit

- Demo

K8s Cluster

Namespace 'sec-ctx’

nginxinc/nginx-unprivileged

.18

1§ Wrap-Up: Security Context

My recommendations:

Start with least privilege
Only differ if there's absolutely no other way

.19

Pod Security P lllll B /
(PSP) By ’\ \

\\ i
I

VA

enforces security context cluster-wide
additional options enforcing secure defaults
more effort than security context and different syntax @

= Still highly recommended!

Recommendations

Same as Security Context

Plus: Enforce secure defaults.

Block pods from
entering node's Linux namespaces, e.g. net, PID
(includes binding ports to nodes directly),
mounting arbitrary host paths (from node)
(includes docker socket),
starting privileged containers,
changing apparmor profile

Security Context Recommendations
» PSP

apiVersion: policy/vlbetal
kind: PodSecurityPolicy
metadata:
annotations:
seccomp.security.alpha.kubernetes.io/defaultProfileName: runtime/default
seccomp.security.alpha.kubernetes.io/allowedProfileNames: runtime/default
spec:
requiredDropCapabilities:
- ALL
allowedCapabilities: []
defaultAllowPrivilegeEscalation:
allowPrivilegeEscalation:
readonlyRootFilesystem:

runAsuser:
rule: MustRunAs
ranges:
- min: 100000

max: 999999

Additional Recommendations

apiVersion: policy/vilbetal
kind: PodSecurityPolicy
metadata:
annotations:
apparmor.security.beta.kubernetes.io/defaultProfileName: runtime/default
apparmor.security.beta.kubernetes.io/allowedProfileNames: runtime/default
spec:
hostIPC:
hostPID:
hostNetwork:
hostPorts: []
privileged:
allowedHostPaths: []
volumes:
- configMap
- emptyDir
- projected
- secret
- downwardAPI
- persistentVolumeClaim

Usage

Activate Admission controler via API-Server
(also necessary for most managed k8s)
Define PSP (YAML)

Activate via RBAC

Example:

O

https://github.com/cloudogu/k8s-security-demos/blob/master/4-pod-security-policies/demo/01-psp-restrictive.yaml

Activation via RBAC

7 PSP pitfalls

Loose coupling in RBAC = fall late with typos
A AdmissionController

only evaluates Pods before starting

If not active #® PSP are ignored

If active but no PSP defined #| no pod can be started
Different PSP API group in (Cluster)Role

<1.16: apiGroups [extensions |

>1.16: apiGroups [policy |

X PSP Debugging Hints

kubectl get pod <POD> -0 jsonpath='{.metadata.annotations.kubernetes\.io/psp}'
kubectl auth can-i use psp/privileged --as=system:serviceaccount:<NS>:<SA>
kubectl who-can use psp/<PSP>

kubectl rbac-lookup <SA>

PSP Limitations

Unavailable options in PSPs
enableServicelLinks: false
automountServiceAccountToken: false

Future of PSPs uncertain

O

= Still easiest way for cluster-wide least privilege

.10

https://github.com/kubernetes/enhancements/issues/5

What if pod requires more privileges?

"Whitelisting"” via RBAC.

-l o E- : - b .

1 Duplicate least privilege PSP

2 Grant required privilege in new PSP
3 Allow PSP via a Role (namespaced)
4 Create ServiceAccount

5 Create RoleBinding

6 Assign ServiceAccount to Pod

11

https://github.com/cloudogu/k8s-security-demos/blob/master/4-pod-security-policies/demo/02a-psp-whitelist.yaml

: Demo

K8s Cluster

Namespace 'psp’

nginx nginxinc/nginx-unprivileged

psp/privileged psp/restricted

.12

Summary

Don't allow arbitrary connections between pods, e.g. via NetPols
Start with least privilege for your containers

using either Security Context or

PSP

Johannes Schnatterer

Cloudogu GmbH @

cloudogu

K8s AppOps security series on JavaSPEKTRUM 05/2019+

See also &

Demo Source:

Y Y. A

https://cloudogu.com/schulungen
https://cloudogu.com/blog/tag/k8s-security
https://twitter.com/cloudogu
https://twitter.com/jschnatterer
https://github.com/cloudogu/k8s-security-demos

