it

o
/] SECURE BY DEFAULT? cloudogu
PRAGMATICALLY IMPROVE APP SECURITY USING K8S

BUILT-INS

Johannes Schnatterer
Cloudogu GmbH

Version: 202010221453-7b64dae

https://twitter.com/jschnatterer

K8s built-in security mechanisms

Network Policies
Security Context
Pod Security Policies

Plenty of Options

Secure by default?
How to improve pragmatically?

A “firewall” for communication between pods.

Applied to pods
within namespace
VIEREDIEIS
Ingress / egress
to/from pods (in namespaces) or CIDRs (egress only)
for specific ports (optional)
Enforced by the CNI Plugin (e.g. Calico)
A No Network Policies: All traffic allowed

X Helpful to get started

Interactively describes what a netpol does:

kubectl describe netpol <name>

https://github.com/ahmetb/kubernetes-network-policy-recipes

Recommendation: Restrict ingress traffic

In all application hamespaces (not kube-system, operators, etc.):.

Deny ingress between podes,
then allow specific routes only.

Advanced: Restrict egress to the outside

VVerbose solution:;
Deny egress between pods,
then allow specific routes,
repeating all ingress rules. @
More pragmatic solution:
Allow only egress within the cluster,
then allow specific pods that need access to internet.

A\ egress target IP addresses might be difficult to maintain

Advanced: Restrict kube-system / operator traffic

A Might stop the apps in your cluster from working
Don't forget to:

Allow external ingress to ingress controller

Allow access to DNS from every namespace

Allow DNS egress to the outside (if needed)

Allow operators egress (Backup, LetsEncrypt, external-dns,
Monitoring, Logging, GitOps-Repo, Helm Repos, etc.)

7 Net pol pitfalls

Allow monitoring tools (e.g. Prometheus)
Restart might be necessary (e.g. Prometheus)
No labels on hamespaces by default
Allowing egress to API server difficult

S

Policies might not be supported by CNI Plugin.
* Testing!

O

https://stackoverflow.com/a/56494510/
https://www.inovex.de/blog/test-kubernetes-network-policies/
https://github.com/inovex/illuminatio

More Features?

Proprietary extensions of CNI Plugin (e.g. cilium or calico)
Service Meshes: similar features, also work with multiple clusters
* different strengths, support each other (ISO/0SI Layer 7 vs 3/4)

https://istio.io/blog/2017/0.1-using-network-policy/

Demo

K8s Cluster

Namespace 'kube-sy: m
eﬂ Traefik

NetPols

web-console:80 \nosglclient:3000

Namespace 'default’ espace ‘production’

Web Console nosglclient eﬂ

NetPols NetPols

mongodb

http://nosqlclient/
http://web-console/

1§ Wrap-Up: Network Policies
My recommendations:

In all application namespaces: restrict ingress traffic
Use with care
restricting egress for cluster-external traffic

restrict traffic in kube-system and for operators

.10

Security Context: Defines security parameters per pod/container
% container runtime
(luster-wide security parameters: See Pod Security Policies

Recommendations per Container

apiVersion: vi
kind: Pod
metadata:
annotations:
seccomp.security.alpha.kubernetes.io/pod: runtime/default
spec:
containers:
- name: restricted
securityContext:
runAsNonRoot :
runAsuUser: 100000
runAsGroup: 100000
allowPrivilegeEscalation:
readOonlyRootFilesystem:
seccompProfile:
type: RuntimeDefault
capabilities:
drop:
- ALL
enableServicelLinks:
automountServiceAccountToken:

Recommendation per Container in Detail

Enable seccomp

Enables e.g. docker's seccomp default profile that block 44/~300

Syscalls
& Has mitigated Kernel vulns in past and might in future @

See also k8s security audit:

https://docs.docker.com/engine/security/non-events/
https://www.cncf.io/blog/2019/08/06/open-sourcing-the-kubernetes-security-audit/

Run as unprivileged user

runAsNonRoot: true

Container is not started when the user is root
runAsuUser and runAsGroup > 10000

& Reduces risk to run as user existing on host
& In case of container escape UID/GID does not have privileges
on host

& E.g. mitigates vuln in runc (used by Docker among others)

https://kubernetes.io/blog/2019/02/11/runc-and-cve-2019-5736/

No Privilege escalation

Container can't increase privileges MAKE ME A SANDWICH,

. ey s WHAT? MAKE
& E.g. sudo, setuid, Kernel vulnerabilities f IT YOURSELF.

SUDO MAKE ME
A SANDWICH.

https://xkcd.com/149/

Read-only root file system

Starts container without read-write layer
Writing only allowed in volumes

& Config or code within the container cannot
be manipulated

91e54dfb1179

0B

d74508fb6632

1.895KB

c22013c84729

194.5 KB

d3a1f33e8a5a

188.1 MB

(based on ubuntu:15.04 image)

Image layers (R/0)

https://docs.docker.com/storage/storagedriver

Drop Capabilities

Drops even the default caps:

& E.g. Mitigates CapNetRaw attack - DNS Spoofing on Kubernetes
Clusters

https://github.com/moby/moby/blob/v19.03.13/oci/defaults.go
https://blog.aquasec.com/dns-spoofing-kubernetes-clusters

Bonus: No Services in Environment

By default: Each K8s service written to each container’s env vars
® Docker Link legacy, no longer needed
& But convenient info for attacker where to go next

.10

Bonus: Disable access to K8s API

SA Token in every pod for api-server authn

curl --cacert /var/run/secrets/kubernetes.io/serviceaccount/ca.crt \
-H "Authorization: Bearer $(cat /var/run/secrets/kubernetes.io/serviceaccount/token)" \
https://${KUBERNETES_SERVICE_HOST}/api/v1/

If not needed, disable!
No authentication possible
& Lesser risk of security misconfig or vulns in authz

J11

7 Security context pitfalls

.12

Read-only root file system
Application might need temp folder to write to

Run image locally using docker, access app
X Run automated e2e/integration tests
Review container’s read-write layer via

docker diff <containerName>

Mount folders as emptyDir volumes in pod

.13

Drop Capabilities
Nl ERINEENEIEREDEDIES

Find out needed Caps locally:

docker run --rm --cap-drop ALL <image>

docker run --rm --cap-drop ALL --cap-add CAP_CHOWN <image>

Add necessary caps to k8s securityContext

Alternative: Find image with same app that does not require caps,
e.g. nginxinc/nginx-unprivileged

.14

Run as unprivileged user

Some official images run as root by default.
Find a trusted image that does not run as root
e.g. for mongo or postgres:

Create your own non-root image
(potentially basing on original image)
e.g. nginx: ©)

.15

https://hub.docker.com/r/bitnami/
https://github.com/schnatterer/nginx-unpriv

UID 100000 lacks file permissions. Solutions:
Init Container sets permissions for volume
Permissions in image #® chmod/chown in Dockerfile

Run in root Group - GID 0

.16

https://docs.openshift.com/container-platform/4.3/openshift_images/create-images.html#images-create-guide-openshift_create-images

Demo

K8s Cluster

Namespace 'sec-ctx’

nginxinc/nginx-unprivileged

17

1§ Wrap-Up: Security Context
My recommendations:

Start with least privilege
Only differ if there's absolutely no other way

.18

enforces security context settings cluster-wide
additional options enforcing secure defaults

more effort than security context and different syntax @
future from K8s 1.22 vague @

O

Still only built-in solution for cluster-wide security settings

https://github.com/kubernetes/enhancements/issues/5

Recommendation

() https://github.com/cloudogu/k8s-security-demos/blob/master/4-
pod-security-policies/demo/01-psp-restrictive.yaml|

¢) https://github.com/sysdiglabs/kube-psp-advisor

https://github.com/cloudogu/k8s-security-demos/blob/master/4-pod-security-policies/demo/01-psp-restrictive.yaml
https://github.com/cloudogu/k8s-security-demos/blob/master/4-pod-security-policies/demo/01-psp-restrictive.yaml
https://github.com/sysdiglabs/kube-psp-advisor

Too much ground to cover for 45 min!

= including Demo

D 2z
AR e

https://youtu.be/YlvdFE1RsmI?t=3092
https://cloudogu.com/en/blog/k8s-app-ops-part-5-pod-security-policies-1

Summary

Don't allow arbitrary connections between pods, e.g. via NetPols
Start with least privilege for your containers

using either Security Context or

PSP

Johannes Schnatterer
Cloudogu GmbH

K8s AppOps security series on JavaSPEKTRUM 05/2019+

See also

Demo Source;

&d

cloudogu

6.

https://cloudogu.com/schulungen
https://cloudogu.com/blog/tag/k8s-security
https://twitter.com/cloudogu
https://twitter.com/jschnatterer
https://github.com/cloudogu/k8s-security-demos

