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K8s built-in security mechanisms

Network Policies
Security Context
Pod Security Policies



Plenty of Options

Secure by default?
How to improve pragmatically?






A “firewall” for communication between pods.

Applied to pods
within namespace
VIEREDIEIS
Ingress / egress
to/from pods (in namespaces) or CIDRs (egress only)
for specific ports (optional)
Enforced by the CNI Plugin (e.g. Calico)
A No Network Policies: All traffic allowed



X Helpful to get started

Interactively describes what a netpol does:

kubectl describe netpol <name>


https://github.com/ahmetb/kubernetes-network-policy-recipes

Recommendation: Restrict ingress traffic

In all application hamespaces (not kube-system, operators, etc.):.

Deny ingress between podes,
then allow specific routes only.



Advanced: Restrict egress to the outside

VVerbose solution:;
Deny egress between pods,
then allow specific routes,
repeating all ingress rules. @
More pragmatic solution:
Allow only egress within the cluster,
then allow specific pods that need access to internet.

A\ egress target IP addresses might be difficult to maintain



Advanced: Restrict kube-system / operator traffic

A Might stop the apps in your cluster from working
Don't forget to:

Allow external ingress to ingress controller

Allow access to DNS from every namespace

Allow DNS egress to the outside (if needed)

Allow operators egress (Backup, LetsEncrypt, external-dns,
Monitoring, Logging, GitOps-Repo, Helm Repos, etc.)



7 Net pol pitfalls

Allow monitoring tools (e.g. Prometheus)
Restart might be necessary (e.g. Prometheus)
No labels on hamespaces by default
Allowing egress to API server difficult

S

Policies might not be supported by CNI Plugin.
* Testing!

O


https://stackoverflow.com/a/56494510/
https://www.inovex.de/blog/test-kubernetes-network-policies/
https://github.com/inovex/illuminatio

More Features?

Proprietary extensions of CNI Plugin (e.g. cilium or calico)
Service Meshes: similar features, also work with multiple clusters
* different strengths, support each other (ISO/0SI Layer 7 vs 3/4)


https://istio.io/blog/2017/0.1-using-network-policy/

Demo

K8s Cluster

Namespace 'kube-sy: m
eﬂ Traefik

NetPols

web-console:80 \nosglclient:3000

Namespace 'default’ espace ‘production’

Web Console nosglclient eﬂ

NetPols NetPols

mongodb



http://nosqlclient/
http://web-console/

1§ Wrap-Up: Network Policies
My recommendations:

In all application namespaces: restrict ingress traffic
Use with care
restricting egress for cluster-external traffic

restrict traffic in kube-system and for operators
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Security Context: Defines security parameters per pod/container
% container runtime
# (luster-wide security parameters: See Pod Security Policies



Recommendations per Container

apiVersion: vi
kind: Pod
metadata:
annotations:
seccomp.security.alpha.kubernetes.io/pod: runtime/default
spec:
containers:
- name: restricted
securityContext:
runAsNonRoot :
runAsuUser: 100000
runAsGroup: 100000
allowPrivilegeEscalation:
readOonlyRootFilesystem:
seccompProfile:
type: RuntimeDefault
capabilities:
drop:
- ALL
enableServicelLinks:
automountServiceAccountToken:



Recommendation per Container in Detail



Enable seccomp

Enables e.g. docker's seccomp default profile that block 44/~300

Syscalls
& Has mitigated Kernel vulns in past and might in future @

See also k8s security audit:


https://docs.docker.com/engine/security/non-events/
https://www.cncf.io/blog/2019/08/06/open-sourcing-the-kubernetes-security-audit/

Run as unprivileged user

runAsNonRoot: true

Container is not started when the user is root
runAsuUser and runAsGroup > 10000

& Reduces risk to run as user existing on host
& In case of container escape UID/GID does not have privileges
on host

& E.g. mitigates vuln in runc (used by Docker among others)


https://kubernetes.io/blog/2019/02/11/runc-and-cve-2019-5736/

No Privilege escalation

Container can't increase privileges MAKE ME A SANDWICH,

. ey s WHAT? MAKE
& E.g. sudo, setuid, Kernel vulnerabilities f IT YOURSELF.

SUDO MAKE ME
A SANDWICH.



https://xkcd.com/149/

Read-only root file system

Starts container without read-write layer
Writing only allowed in volumes

& Config or code within the container cannot
be manipulated

91e54dfb1179

0B

d74508fb6632

1.895KB

c22013c84729

194.5 KB

d3a1f33e8a5a

188.1 MB

(based on ubuntu:15.04 image)

Image layers (R/0)



https://docs.docker.com/storage/storagedriver

Drop Capabilities

Drops even the default caps:

& E.g. Mitigates CapNetRaw attack - DNS Spoofing on Kubernetes
Clusters


https://github.com/moby/moby/blob/v19.03.13/oci/defaults.go
https://blog.aquasec.com/dns-spoofing-kubernetes-clusters

Bonus: No Services in Environment

By default: Each K8s service written to each container’s env vars
® Docker Link legacy, no longer needed
& But convenient info for attacker where to go next
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Bonus: Disable access to K8s API

SA Token in every pod for api-server authn

curl --cacert /var/run/secrets/kubernetes.io/serviceaccount/ca.crt \
-H "Authorization: Bearer $(cat /var/run/secrets/kubernetes.io/serviceaccount/token)" \
https://${KUBERNETES_SERVICE_HOST}/api/v1/

If not needed, disable!
No authentication possible
& Lesser risk of security misconfig or vulns in authz
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7 Security context pitfalls
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Read-only root file system
Application might need temp folder to write to

Run image locally using docker, access app
X Run automated e2e/integration tests
Review container’s read-write layer via

docker diff <containerName>

Mount folders as emptyDir volumes in pod
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Drop Capabilities
Nl ERINEENEIEREDEDIES

Find out needed Caps locally:

docker run --rm --cap-drop ALL <image>

docker run --rm --cap-drop ALL --cap-add CAP_CHOWN <image>

Add necessary caps to k8s securityContext

Alternative: Find image with same app that does not require caps,
e.g. nginxinc/nginx-unprivileged
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Run as unprivileged user

Some official images run as root by default.
Find a trusted image that does not run as root
e.g. for mongo or postgres:

Create your own non-root image
(potentially basing on original image)
e.g. nginx: ©)

.15


https://hub.docker.com/r/bitnami/
https://github.com/schnatterer/nginx-unpriv

UID 100000 lacks file permissions. Solutions:
Init Container sets permissions for volume
Permissions in image #® chmod/chown in Dockerfile

Run in root Group - GID 0
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https://docs.openshift.com/container-platform/4.3/openshift_images/create-images.html#images-create-guide-openshift_create-images

Demo

K8s Cluster

Namespace 'sec-ctx’

nginxinc/nginx-unprivileged
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1§ Wrap-Up: Security Context
My recommendations:

Start with least privilege
Only differ if there's absolutely no other way
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enforces security context settings cluster-wide
additional options enforcing secure defaults

more effort than security context and different syntax @
future from K8s 1.22 vague @

O

# Still only built-in solution for cluster-wide security settings


https://github.com/kubernetes/enhancements/issues/5

Recommendation

() https://github.com/cloudogu/k8s-security-demos/blob/master/4-
pod-security-policies/demo/01-psp-restrictive.yaml|

¢) https://github.com/sysdiglabs/kube-psp-advisor


https://github.com/cloudogu/k8s-security-demos/blob/master/4-pod-security-policies/demo/01-psp-restrictive.yaml
https://github.com/cloudogu/k8s-security-demos/blob/master/4-pod-security-policies/demo/01-psp-restrictive.yaml
https://github.com/sysdiglabs/kube-psp-advisor

Too much ground to cover for 45 min!

= including Demo

D 2z
AR e


https://youtu.be/YlvdFE1RsmI?t=3092
https://cloudogu.com/en/blog/k8s-app-ops-part-5-pod-security-policies-1

Summary

Don't allow arbitrary connections between pods, e.g. via NetPols
Start with least privilege for your containers

using either Security Context or

PSP
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See also

Demo Source;

&d

cloudogu
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https://cloudogu.com/schulungen
https://cloudogu.com/blog/tag/k8s-security
https://twitter.com/cloudogu
https://twitter.com/jschnatterer
https://github.com/cloudogu/k8s-security-demos

